Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation

> Marion O. Hagler Department of Electrical and Computer Engineering Mississippi State, MS 39762 USA hagler@ece.msstate.edu

Introduction

- Since 1999, all ECE undergraduate students at MSU have laptop computers
- In spring 2005, first course in electronic circuits will require hardware homework
 - Students construct circuits at home
 - Measure circuit performance with audio capability of laptops as oscilloscope, spectral analyzer, and signal generator

Basic Approach

By pair wise comparison of

- Analysis
- Measurement
- Simulation

students

- Deploy complex, intensely interactive, learning environments
- Learn to self-assess their work

Circuits with inductors and capacitors

Student laptop functions as:

- Signal generator
- Oscilloscope
- Spectrum analyzer
- Software (~US\$90):
 - Realtime Analyzer (DSSF3 Light version)
 - http://www.ymec.com/products/dssf3e/

Circuits with inductors and capacitors

Simple example: RC low pass filter

RC low pass filter: white noise spectral response

• R = 4700 Ω , C = 0.1 μ F, f_c \approx 340 Hz

RC low pass filter: 500 Hz square wave response

\blacksquare R = 4700 Ω , C = 0.1 μ F, f_c \approx 340 Hz

RC low pass filter: square wave and white noise inputs

1000 Hz square wave

white noise

RC low pass filter: impulse response

• $R = 4700\Omega$, $C = 0.1\mu$ F, RC = 0.47 msec

• Op amp GBW ≈ 1 MHz

Analysis: • Gain without feedback: $A = A_{LF} \frac{1}{1 + j \frac{f}{f_{RW}}}$ $G = G_{LF} \frac{1}{1 + j \frac{f}{\frac{A_{LF}}{G_{LF}} f_{BW}}}$ With feedback: • In both cases: $GBW = A_{LF} f_{BW}$ Feedback conserves GBW

Response when G = 96

Measured input:

Measured output:

🔟 Oscilloscope - 0:46:00

Simulation:

×

• Response when G = 342

Measured input:

Measured output:

Simulation:

• Response when G = 535

Measured input:

Measured output:

Simulation:

- Spectral response:
- G = measured (analytical)
- G = 112 (102)
- BW = 7 kHz
- GBW = 786 kHz

G = 399 (353)R G

$$SW = 2.2 \text{ kHz}$$

SW = 877 kHz

G = 563 (551)BW = 1.6 kHzGBW = 901 kHz

Wien bridge op amp oscillator: f = 1592 Hz

R = 1000Ω, C = 0.1μF, f = 1592 Hz

Wienbridge op amp oscillator: f = 1592 Hz

G = 1.025

Waveform:

Spectrum:

G = 1.030

Wienbridge op amp oscillator: f = 1592 Hz

G = 1.025

Measured spectrum

(unequal battery volts; even harmonics)

Simulated spectrum

(equal battery volts;

no even harmonics)

Simulated spectrum

(unequal battery volts;

even harmonics)

Op amp inverting integrator

R = 10,000Ω, C = 10nF

Op amp inverting integrator

Input signal

(2000 Hz square wave)

Output signal

(2000 Hz triangular wave)

Resistive circuits

 Students purchase and use an inexpensive (<US\$25) digital multimeter for measurements

Two loop, 5 resistor circuit

Resistors: 1k, 2.2k, 4.7k, 10k, 15k Batteries: 9V, 9V

Two loop five resistor circuit

- Write mesh and node equations and solve with MATLAB
- Simulate circuit with OrCAD PSpice
- Measure circuit voltages and currents with digital multimeter
- Interactive learning: comparison of measurements and calculations

Two loop five resistor circuit

Plot of the power dissipated in the load resistor vs. its resistance:

R-2R digital-to-analog converter

 $R = 5000\Omega$

R = 10kΩ

Discussion and Conclusion

Approximate parts list

Students already have bought shaded parts and used them for hardware homework in a first year course.

Part description	RadioShack part number	Price \$US
15-Range Digital Multimeter, with battery	22-810	23.48
1/4 Watt Resistor Assortment	271-308	6.29
9V Rectangular Battery (2)	23-875	6.58
9V Battery Snap Connectors	270-324	2.59
Adjustable resistor, 10k Ohms	271-282	1.29
0.01µF Capacitor (2)	272-1051	2.38
0.1µF Capacitor (2)	272-1053	2.38
741 Operational Amplifier IC	276-007	0.99
General Purpose IC PC Board (5)	276-150	8.95
8-Pin IC sockets (2 packages)	276-1995	1.38
Shielded Cables, 1/8" phone plug to alligator clips (2)	42-2421	6.58
Long-Nose Mini Pliers	64-2953	4.99
Soldering Pencil, 15-Watt	64-2051	8.39
0.032" Rosin Core Solder	64-017	1.59
Total		77.86

Discussion and Conclusion

In view of

- 3 years positive results with hardware homework in a first year course for ECE students,
- Promise of hardware homework to promote intensely interactive learning environments,
- Success of prototype projects,
- ECE faculty voted to
 - Deploy hardware homework in first of restructured circuit and electronics courses in spring 2005
 - Strengthen labs in successive courses in view of stronger student lab experience in early courses